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Abstract
The XPG/ERCC5 endonuclease was originally identified as the causative gene for Xeroderma Pigmentosum complementa-
tion group G. Ever since its discovery, in depth biochemical, structural and cell biological studies have provided detailed 
mechanistic insight into its function in excising DNA damage in nucleotide excision repair, together with the ERCC1–XPF 
endonuclease. In recent years, it has become evident that XPG has additional important roles in genome maintenance that 
are independent of its function in NER, as XPG has been implicated in protecting replication forks by promoting homolo-
gous recombination as well as in resolving R-loops. Here, we provide an overview of the multitasking of XPG in genome 
maintenance, by describing in detail how its activity in NER is regulated and the evidence that points to important functions 
outside of NER. Furthermore, we present the various disease phenotypes associated with inherited XPG deficiency and 
discuss current ideas on how XPG deficiency leads to these different types of disease.
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Introduction

DNA lesions are an unavoidable fact of life and it is esti-
mated that, daily, each of our cells is confronted with 
approximately 104–105 new DNA lesions [1, 2]. These 
lesions can interfere with essential genome processes, such 
as transcription and replication, and thus have immediate 
and long-term consequences. Cells, therefore, utilize a range 
of specialized DNA repair mechanisms, signaling pathways, 
tolerance processes and cell cycle checkpoints, collectively 
called the DNA damage response (DDR), to cope with DNA 
lesions and maintain proper function of the genome [1, 3, 
4]. Genetic diseases, neurological degeneration, premature 
aging and increased cancer susceptibility are severe fall-
outs of inherited DDR defects that illustrate the human’s 
health reliance on an operational DDR. XPG, also called 
ERCC5, is a major DDR endonuclease, whose deficiency 
results in severe developmental defects, progeria and can-
cer. It is mainly known for its role in excising DNA damage 
in nucleotide excision repair (NER), but in recent years, it 

has been found to function in other genome maintenance 
mechanisms as well. In this review, we provide a detailed 
overview of XPG’s function and activity in NER, highlight-
ing recent new insights, discuss the evidence suggesting 
that it has important functions beyond NER and describe 
the pleiotropic phenotypic consequences of inherited XPG 
deficiency.

Nucleotide excision repair

NER is unique in its ability to repair a wide range of 
lesions that arise from diverse and different genotoxic 
insults because, in contrast to most other DNA repair 
pathways, it detects the structural consequences of DNA 
damage, i.e., helix destabilization, instead of the DNA 
lesion itself [5]. These helix-distorting lesions include 
the UV-induced cyclobutane pyrimidine dimers (CPDs) 
and pyrimidine-pyrimidone (6–4) photoproducts (6–4PPs), 
ROS-induced cyclopurines and chemotherapy drug-
induced (e.g., cisplatin) intrastrand crosslinks. More than 
30 proteins are involved in the intricate network of NER, 
and cooperate to perform four essential steps: (1) damage 
detection; (2) damage verification; (3) excision of a single-
stranded damage-containing DNA segment; and (4) DNA 
synthesis and ligation to restore and seal the gap [6, 7] 
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(Fig. 1). Depending on where in the genome lesions occur, 
two different damage detection sub-pathways can initiate 
NER. Transcription-coupled repair (TC-NER) detects 

lesions in the transcribed strand of active genes, whereas 
global genome repair (GG-NER) detects lesions anywhere 
in the genome.
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The great majority of helix-destabilizing DNA lesions are 
detected by GG-NER, which examines the entire genome, 
coding and non-coding, for DNA damage-induced helical 
distortions [6, 7]. The XPC protein, as part of the hetero-
trimeric XPC–CETN2–RAD23B complex is capable of 
detecting a broad range of structurally unrelated lesions 
by employing an indirect damage recognition mode with 
which it probes for DNA helix destabilization [5, 8, 9]. XPC 
requires the auxiliary function of the CRL4DDB2 E3 ubiqui-
tin ligase complex, comprising DDB1, DDB2, CUL4A and 
RBX1, to efficiently recognize some types of lesions, such as 
the UV-induced CPDs [10, 11]. CRL4DDB2 stimulates XPC 
recruitment by binding and flipping out damaged bases, 
making them more suitable substrates for XPC, and by ubiq-
uitylating both DDB2 and XPC, promoting the DNA dam-
age handover [10–14]. To counteract the cytotoxic effects 
of lesions that block RNA Polymerase II (Pol II) forward 
translocation during transcription elongation, TC-NER is 
activated with the recruitment of CSB and CSA proteins [15, 
16]. CSB transiently interacts with Pol II, but binds more 
stably when it cannot push Pol II forward due to a transcrip-
tion-blocking lesion [17]. This leads to recruitment of CSA, 
which is part of the larger E3 ubiquitin ligase CRL4CSA and 
directs the ubiquitylation and proteasomal degradation of 
CSB and, after interacting with ELOF1, of Pol II [18–22]. 
CSB is, however, stabilized by subsequent recruitment of the 
UVSSA protein together with the de-ubiquitylation enzyme 
USP7 [23–25].

Stable DNA damage association of XPC, in GG-NER, or 
UVSSA, in TC-NER, leads to the next step of damage verifi-
cation by the NER machinery through recruitment of TFIIH, 
which directly interacts with either XPC (via GG-NER) or 
UVSSA (via TC-NER) [26–28]. TFIIH is a 10-subunit mul-
tifunctional complex that opens the DNA helix in both NER 

[29] and transcription initiation by Pol II [30]. Its XPD heli-
case subunit verifies the presence of genuine NER substrates 
by unwinding the DNA in 5ʹ–3ʹ direction while scanning 
for helicase-blocking lesions [29, 31]. This helicase activ-
ity and damage verification is stimulated by the association 
of the DNA damage binding protein XPA [31–33], which 
also, together with the single-stranded DNA-binding fac-
tor RPA, orients the two structure-specific endonucleases 
ERCC1–XPF and XPG on the damaged strand [34–36]. The 
presence of XPG enables the first incision, 5ʹ to the lesion, 
by ERCC1–XPF, and the second incision, 3ʹ to the lesion 
and leading to damage excision, is then finalized by XPG 
itself [36]. The resulting 22–30 nucleotide DNA gap is filled 
by novel DNA synthesis involving the activity of replica-
tion proteins RFC, PCNA and either DNA polymerase δ 
(non-replicating cells), ε (mainly in replicating cells) or κ 
(non-replicating cells) and either DNA ligase I or III to seal 
the gap [37–39].

XPG activity in nucleotide excision repair

XPG is a member of the XPG/RAD2 family of structure-
specific nucleases, which in mammals also includes FEN1, 
GEN1 and EXO1 and which all have important genome 
maintenance functions [40]. FEN1 participates in DNA 
replication by cleaving 5ʹ single and double flap structures 
[41]. GEN1 functions in resolution of double holiday junc-
tions during various types of homologous recombination 
[42]. EXO1 resects DNA in multiple genome maintenance 
mechanisms, including mismatch repair, double-strand 
break repair and NER [43]. XPG is an endonuclease that 
was found to cut 5ʹ flap structures, 5ʹ single-stranded tails of 
splayed-arm structures and to incise bubble DNA at the 3ʹ 
junction in vitro [44, 45] (Fig. 2a). This activity implies that 
during NER, XPG incises DNA at the 3ʹ site of the lesion. 
Indeed, incision of XPG during NER requires a bubble sub-
strate [46], which is generated by the helicase activity of 
TFIIH [47, 48]. As XPG interacts with DNA at ss/dsDNA 
junctions [49], XPG is likely only stably bound to damaged 
DNA in vivo once this bubble is created, i.e., simultane-
ously with or after TFIIH recruitment and activity. Indeed, 
its recruitment and stable binding to DNA damage in living 
cells was shown to depend on functional TFIIH and to be 
temperature sensitive, in line with a role for TFIIH heli-
case activity to unwind DNA [35]. The TFIIH-dependent 
recruitment of XPG furthermore correlates with the strong 
observed interaction between XPG and TFIIH, even in the 
absence of DNA damage, suggesting that at least a fraction 
of XPG is always bound to TFIIH and stabilizes it [50, 51]. 
Besides, XPG has been reported to interact directly with 
RPA [52], which also stimulates its incision activity in vitro 
[53]. As RPA binds the undamaged ssDNA opposite of the 

Fig. 1   Nucleotide excision repair mechanism. A Transcription-cou-
pled NER. Pol II stalling at UV lesions recruits CSB, whose pro-
longed binding to Pol II triggers CSA recruitment, which is part of 
the larger CRL4CSA complex that also comprises DDB1, CUL4A and 
RBX1. CRL4CSA interacts with ELOF1 and ubiquitylates CSB and 
Pol II to target these for proteasomal degradation. Next, UVSSA and 
USP7 are recruited, which, respectively, recruit TFIIH and de-ubiq-
uitylate and stabilize CSB. B Global genome NER. DDB2, as part 
of the CRL4DDB2 complex, binds to UV lesions and facilitates their 
efficient recognition and stable binding by XPC, by means of auto-
ubiquitylation and XPC ubiquitylation. Stable binding of XPC leads 
to TFIIH recruitment, followed by RNF111-mediated ubiquityla-
tion and dissociation of XPC. C Core NER reaction. Stable associa-
tion of XPC or UVSSA to lesions recruits TFIIH, which unwinds the 
DNA with its helicase activity to verify the damage. XPA displaces 
the TFIIH CAK subcomplex and stimulates its helicase activity. RPA 
binds the undamaged strand and together with XPA positions the 
ERCC1–XPF and XPG endonucleases 5ʹ and 3ʹ to the lesion, respec-
tively. XPF 5ʹ incision is followed by XPG 3ʹ incision after which 
PCNA and DNA polymerases, together with other re-synthesis fac-
tors, are recruited to fill the gap

◂
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DNA lesion after TFIIH has unwound the DNA, this inter-
action is probably important for stable association and/or 
positioning of XPG [34].

XPG is a 1186-amino acid protein consisting of two con-
served nuclease domains, i.e., the N and I region, which it 
shares with other nucleases but which are separated by a 
spacer region that is unique to XPG [45, 54] (Fig. 2b). In 
addition, two regions were identified that are strongly con-
served among higher eukaryotes, referred to as the D1 and 
D2 boxes [55], of which the first overlaps with a predicted 
ubiquitin binding motif (UBM) [56]. Also, XPG contains 
three nuclear localization sequences and a PIP-box motif 
for interaction with PCNA [57, 58]. Multiple subunits of 
TFIIH, including XPB, XPD, p52 and in particular also 
p62, via its Pleckstrin homology (PH) domain, were found 
to interact with multiple sites within XPG [32, 59, 60]. 
Structural and genetic studies of the yeast XPG homolog 
Rad2 identified two acidic segments within the Rad2 spacer 
region (Rad2642–690 and Rad2359–383) that have high affin-
ity for the PH domain of Tfb1, the yeast homolog of p62, 
and functionally stimulate NER [61, 62]. The PH motifs of 
yeast Tfb1 and human p62 are very similar [63], suggesting 

functional conservation even though the sequence of the 
spacer region in XPG is not strongly conserved. Indeed, 
chemical crosslinking of purified XPG, in complex with 
TFIIH, XPA and a DNA substrate, suggests a direct inter-
action of the spacer region with p62 [32]. Moreover, the 
disordered C-terminus of XPG appears to mostly interact 
with XPB and p52, while the N-terminal part of the spacer 
region mostly interacts with XPD. Interestingly, deletions 
specifically of the N-terminal part of the spacer region were 
found to disrupt interactions with TFIIH and impair XPG 
endonuclease activity, causing an increase in UV sensitivity 
in cells [64, 65].

In GG-NER, upon damage detection, XPC recruits TFIIH 
to sites of damage via interactions with its XPB and p62 
subunits, as indicated by binding experiments with purified 
proteins [27, 66]. Because XPB and p62 also appear to be 
involved in XPG recruitment [59, 60] and because in in vitro 
reconstituted NER assays XPG binding to DNA damage 
coincides with XPC dissociation [67, 68], it is thought that 
XPG exchanges with XPC upon recruitment to DNA dam-
age. In fact, XPC and its yeast ortholog Rad4 were shown 
to contain similar acidic binding motifs as XPG/Rad2 with 
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Fig. 2   XPG structure and DNA substrate binding. A DNA sub-
strates of XPG. XPG binds to and incises 5ʹ flap structures, 5ʹ single-
stranded tails of splayed arms, and the 3ʹ junction of DNA bubbles. 
B XPG schematic structure. XPG contains two nuclease domains N 
and I, separated by a unique spacer region, a PCNA-interacting Pro-
tein (PIP) box and three Nuclear Localization Signal (NLS) regions. 
The D1 and D2 boxes are highly conserved among eukaryotes. C 

XPG interactions with DNA. Crystal structure of the catalytic core 
of XPG in complex with a splayed-arm DNA substrate. XPG inter-
acts with dsDNA via a helix-2-turn-helix (H2TH) module (shown 
in purple) and an adjacent α-helix (shown in orange). Furthermore, 
a hydrophobic wedge and β-pin interact with the ss/dsDNA junction. 
Image depicts structure PDB 6TUW (complex 1) from [76] and was 
generated using PyMol
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which they interact with the PH domain of p62/Tfb1 and 
compete for binding with XPG/Rad2 [69, 70]. The idea that 
XPC and XPG exchange is further supported by live cell 
imaging studies showing that inefficient XPC dissociation, 
due to inhibition of its RNF111-mediated ubiquitylation, 
impairs the stable integration of XPG into active NER pre-
incision complexes [71]. It is, however, currently unclear 
how this exchange of XPC and XPG binding to TFIIH can 
be reconciled with the idea that XPG is already bound to 
TFIIH in the absence of DNA damage [50, 51]. Possibly, 
this involves structural changes and/or dimerization of XPG, 
as has been recently suggested to occur [72], which would 
allow XPG to bind in an alternate fashion and more tightly 
to TFIIH upon DNA damage recruitment and would position 
XPG for DNA incision.

It is often assumed that XPG is similarly recruited by its 
interaction with TFIIH in TC-NER, but this has not been for-
mally shown. After initiation of TC-NER by binding of CSB 
to lesion-stalled Pol II, CSA is recruited, which, together 
with ELOF1, promotes recruitment of the UVSSA protein 
[15, 16, 21, 28]. Subsequently, TFIIH is recruited by interac-
tion with UVSSA, which has a similar acidic motif as XPC 
and XPG and binds to TFIIH through the PH domain of p62 
[26, 28]. Therefore, it is conceivable that, in TC-NER, XPG 
exchanges binding to TFIIH with UVSSA as it does with 
XPC in GG-NER. It is, however, unclear whether TFIIH has 
a similar role in opening DNA in TC-NER as in GG-NER, 
to generate the proper substrate for XPG incision, as within 
the transcription bubble of lesion-stalled Pol II the DNA is 
already unwound [15]. Therefore, it is possible that XPG 
recruitment and its stable association to TC-NER complexes 
involve additional or different mechanisms. In support of 
this, it was found that in vitro XPG can interact directly with 
stalled Pol II and CSB in a transcription-sized DNA bubble 
[59, 73]. Also, TFIIH was found to interact with the RPB6 
subunit of Pol II directly via the PH domain of p62 [74], 
implying that recruitment and/or stable association of XPG 
with TC-NER complexes additionally involves direct inter-
actions of XPG and TFIIH with stalled Pol II. Interestingly, 
incision of the transcription bubble by XPG was inhibited by 
stalled Pol II in the absence of TFIIH [73], which suggests 
that in TC-NER TFIIH activity may be required to remodel 
lesion-bound Pol II to permit DNA incision.

XPG structure, DNA‑binding 
and dimerization

Several structure-based studies have provided important 
insights into XPG’s DNA binding, substrate specificity and 
incision. DNA-binding and footprinting assays with puri-
fied XPG showed that XPG mainly binds to the dsDNA 
part of a splayed-arm structure and cuts 1 nt into the DNA 

duplex, preferably if a 5ʹ ssDNA overhang is present [49]. 
Crystallization of the catalytic core domain of Rad2 and 
XPG in complex with a DNA substrate furthermore revealed 
that Rad2/XPG interacts via several structural motifs with 
dsDNA and the ssDNA/dsDNA junction that mimic the 
NER DNA bubble structure [75, 76]. The key interactions 
with DNA are mediated by a helix-2-turn-helix (H2TH) 
module of XPG with a flanking α-helix that binds both 
strands of the dsDNA (Fig. 2C). The other key contact is 
with the ss/dsDNA junction and is mediated by a ‘hydropho-
bic wedge’ and β-pin that forms a protrusion. Interestingly, 
the human XPG structure shows the existence of a helical 
arch pore suggesting the possibility of threading of the 5ʹ 
DNA flap before incision [76], but this needs further inves-
tigation. Although not evident from these crystal structures, 
it is interesting to note that there are indications that XPG 
acts as a dimer. Whether XPG acts in NER as mono- or 
multimer has been for long a topic of debate. XPG appears 
to diffuse freely through the nucleus without being part of 
a larger complex [35] and when purified exists as monomer 
in high salt conditions, but co-immunoprecipitation experi-
ments of XPG with itself from insect or human cells suggest 
that XPG can form dimers [72, 77]. Also, purification of 
XPG through size-exclusion chromatography shows a peak 
of which the molecular mass is in accordance with a dimer. 
Mutation of residues in a putative dimer interface of XPG 
led to protein destabilization and reduced incision activity 
of a bubble substrate [72]. Intriguingly, dimerization could 
imply that XPG interacts with dsDNA on both sides of a 
NER DNA bubble structure, which could be functionally 
relevant to XPF-mediated incision, as discussed below.

Non‑catalytic functions and dissociation 
of XPG from DNA damage

XPG does not only have a catalytic but also a structural role 
in NER. XPG stably associates with TFIIH and stabilizes the 
complex [51] and, in vitro, stimulates XPD helicase activ-
ity and DNA opening by TFIIH [32]. Cryo-EM and chemi-
cal crosslinking studies of TFIIH, XPA and XPG bound 
to a DNA substrate suggest that the XPB translocase and 
XPD helicase activities are inhibited by interaction of XPD 
with the CAK (cyclin-dependent kinase activating kinase) 
TFIIH subcomplex formed by MNAT1, CDK7, and Cyclin 
H. The CAK subcomplex mediates important transcription 
functions of TFIIH, such as, e.g., phosphorylation of Pol 
II, but is dispensable for NER [30]. Binding of XPA stabi-
lizes a TFIIH conformation that cannot bind CAK, in line 
with the observation that XPA stimulates dissociation of this 
subcomplex from TFIIH during NER [33], which would, 
thus, relieve this inhibition. Interestingly, the N-terminus 
of XPG also interacts with XPD at its binding site for the 
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CAK subcomplex, suggesting that competition with CAK 
for binding to XPD is how XPG can stimulate XPD helicase 
activity.

Upon recruitment of TFIIH, XPA, RPA and XPG to DNA 
damage, damage removal is initiated by DNA incision at 
the 5ʹ site of the lesion by ERCC1–XPF, such that repair 
synthesis can also be started. This depends on the structural 
presence of XPG but does not require its catalytic activity 
[36, 78]. Only after ERCC1–XPF incision, XPG cuts at the 
3ʹ site of the lesion. It is currently unclear how the mere 
presence of XPG at the NER bubble substrate facilitates 
ERCC1–XPF-mediated incision and, vice versa, how its 5ʹ 
incision subsequently provokes 3’ incision by XPG. It has 
been suggested that XPG dimerization might allow XPG to 
bind both 3ʹ as well as 5ʹ to the NER bubble substrate, close 
to XPF, thus facilitating its incision [72]. Furthermore, XPG 
activation and incision has been hypothesized to be induced 
by a conformational change in the NER incision complex 
or by a structural rearrangement in XPG itself, such as a 
posttranslational modification, due to either ERCC1–XPF-
mediated 5’ incision or due to initiation of DNA repair syn-
thesis following this 5ʹ incision [6, 36, 54].

Following dual incision, it is unclear what exactly hap-
pens to XPG. Some NER proteins that have performed their 
activity are actively unloaded, involving posttranslational 
modifications and the activity of other proteins, such as 
DDB2 by the segregase VCP/p97 [14, 79] and XPC by the 
E3 ubiquitin ligase RNF111 [71]. The dissociation of other 
NER proteins appears to coincide with the release of the 
excised damaged DNA oligomer. Excision assays in cell-
free extracts and cells showed that NER-excised DNA frag-
ments are in tight complex with TFIIH [80], but also with 
XPG, possibly because of its strong association to TFIIH 
[81]. This suggests that XPG might dissociate along with 
the excision product upon incision. However, it has been 
suggested that, besides incising DNA, XPG is involved 
in DNA re-synthesis by helping to recruit DNA synthesis 
factors, in particular PCNA, indicating that XPG initially 
remains bound after incision. In vitro reconstitution of dual 
incision of a cisplatin–DNA adduct suggested that excision 
coincides with the dissociation of several factors, including 
TFIIH and XPF, but that XPG and RPA remain bound to 
DNA to participate in DNA re-synthesis, likely by helping 
recruit RFC and PCNA [67, 82]. Recruitment of PCNA to 
DNA damage indeed depends on XPG [83], but so does the 
5ʹ incision by XPF [36]. In the presence of nuclease-inactive 
XPG, ERCC1–XPF can incise DNA and post-incision NER 
factors, including PCNA, are recruited, pointing to the pos-
sibility that DNA repair synthesis can be initiated before 3ʹ 
incision by XPG takes place [36]. XPG has been implicated 
in recruiting PCNA through a direct interaction with a PIP-
box motif in its C-terminus [57]. PCNA furthermore inter-
acts with XPA [84], which might regulate its recruitment, 

and RFC, which is needed to properly load the PCNA clamp 
around DNA [85]. Thus, it was postulated that XPG recruits 
PCNA before incising the damage at the 3ʹ site after which 
PCNA is correctly loaded by RFC after 5ʹ incision and XPF 
dissociation [86]. Since it was found that XPG is bound to 
excised DNA fragments [81], this suggests that even though 
XPG may initially, before or during 5ʹ DNA incision, help to 
recruit PCNA, it rapidly dissociates together with the excised 
DNA fragment once the dual incision takes place, handing 
over PCNA to RFC and possibly XPA. Alternatively, it was 
proposed that upon incision and recruitment of PCNA, XPG 
is ubiquitylated by the E3 ubiquitin ligase complex CRL4Cdt2 
and subsequently degraded, to make room for subsequent 
DNA synthesis factors [87]. However, even though ubiq-
uitylation of XPG after UV has been reported by others as 
well [88, 89], its precise function and whether this indeed 
promotes XPG removal, requires further confirmation.

XPG functions beyond NER

Transcription and base excision repair

Besides being involved in NER, XPG has been implicated 
in other DNA transacting and maintenance mechanisms 
(Fig. 3). Together with other NER proteins, XPG has been 
implicated in regulating transcription, both by stabilizing 
TFIIH [51] as well as by promoting demethylation and, 
through the generation of DNA breaks, recruitment of the 
chromatin organizer CTCF to gene promoters [90, 91]. Also 
in yeast, Rad2/XPG was implicated in regulating transcrip-
tion through an interaction with Pol II and Mediator [92, 93]. 
Furthermore, XPG is implicated in the removal of oxidative 
DNA damage by base excision repair (BER). This pathway 
resembles NER in that it mediates excision of a damaged 
base, but both the detection of oxidative base lesions, by 
various glycosylases, as well as the removal of the lesion 
and gap filling are performed by a different set of proteins. 
Still, emerging evidence suggests that substantial interplay 
between the NER and BER machineries exists [94] and mul-
tiple NER proteins have been implicated in stimulating BER 
activity, even though the precise involved mechanisms are 
not yet understood [95–99]. Cells deficient in several NER 
proteins, including XPG, show reduced repair of and/or are 
hypersensitive to oxidative DNA damage [100], suggesting 
a function in the removal of oxidative DNA lesions. Inter-
estingly, in an in vitro reconstituted BER system, XPG was 
found to stimulate the DNA-binding activity of the DNA 
glycosylase NTH1, which detects and removes oxidized 
bases, independently of its endonuclease activity [101, 102]. 
Interaction between XPG and NTH1 was furthermore con-
firmed in cells [103]. These data suggest a possible role for 
XPG in the removal of oxidative lesions that is independent 
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from NER, but further studies, especially cellular or in vivo 
experiments, are needed to support this notion.

Resolving R‑loops

One of the major activities of XPG besides NER appears 
to be in resolving R-loops. These are three-stranded 
RNA–DNA hybrid-containing structures that originate dur-
ing transcription when the nascent RNA molecule from the 
transcription machinery hybridizes with the DNA template 
strand. Physiological R-loops are commonly found in many 
organisms and are implicated in transcription regulation. 
However, pathological R-loops may arise in an unscheduled 
fashion, for instance due to transcription blockage or defects 
in RNA processing, and by interference of DNA replica-
tion with transcription [104]. Cells have developed multiple 
specialized mechanisms to cope with these R-loops, includ-
ing RNA degradation by ribonucleases and RNA–DNA 
hybrid unwinding by helicases. When these mechanisms 
fail, RNA–DNA hybrid structures can lead to DNA dam-
age and genomic instability, although they are thought to 
play a faciliatory role in DDR as well [105, 106]. Interest-
ingly, since R-loops form bubble structures that resemble 
substrates for ERCC1–XPF and XPG, both NER endonu-
cleases are considered as candidates to process R-loops. 
Indeed, ERCC1–XPF and XPG can cleave R-loops in vitro 
[107]. Furthermore, it was observed in cells that the deple-
tion of the R-loop helicase AQR resulted in more R-loop 

formation and fewer DNA breaks if XPF or XPG are defi-
cient [108]. Because of these and similar findings with other 
TC-NER factors, it was proposed that TC-NER processes 
R-loops associated with paused transcription into double-
strand breaks (DSBs) [108, 109]. Interestingly, in line with 
this idea, it was found that the HLTV-1 viral oncoprotein 
Tax promotes cellular senescence by inducing an increase 
in R-loops that results in excessive DSB formation by XPF 
and XPG [110]. Therefore, HTLV-1-induced adult T-cell 
leukemias avoid senescence by selection for cells that have 
lost the activity of XPG or other TC-NER proteins.

XPG was also found to be recruited to R-loops gener-
ated at DSBs in transcriptionally active regions, in a Rad52-
dependent manner, to help resolve R-loops and stimulate 
repair by transcription-associated homologous recombina-
tion [111]. Additional evidence that XPG processes R-loops 
comes from the observations that XPF and XPG form a com-
plex together with the splicing factor XAB2, which is inde-
pendent of NER, that is targeted to R-loops [112]; that XPG 
co-localizes with R-loops [113]; and that there is reduced 
DSB formation upon XPG depletion in cells with increased 
R-loops, due to camptothecin-induced transcription blockage 
[114] or due to replication-fork stalling in Werner protein 
deficient cells [115]. Together, these results strongly sug-
gest that XPG is an important factor for cells to deal with 
R-loops, but it remains to be investigated to which types 
of R-loops and processing mechanisms XPG is important 
and with which other R-loop processing factors it interplays. 
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XPG

XPGNth1

Nth1
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Fig. 3   XPG functions in genome maintenance pathways other than 
NER. A Repair of oxidative damage. Initial binding of XPG to an 
oxidized base stimulates Nth1 DNA-binding activity, followed by 
removal of the oxidized base and repair by BER. B R-loop process-
ing. R-loops arise when during Pol II transcription the nascent mRNA 
hybridizes with one of the DNA strands. One of the 3ʹ prime junc-
tions of the resulting bubble structure is recognized and processed 
by XPG endonuclease activity. C Homologous Recombination. HR 

of DSBs generated by endogenous DNA damage is initiated by DNA 
end resection followed by RPA coating of the resulting ssDNA. XPG 
interacts with and facilitates the loading of the BRCA2–PALB2–
RAD51 complex to DSB sites. RAD51 replaces RPA and promotes 
the presynaptic filament to initiate HR. Of note, closed XPG circles 
represent putative non-catalytic activity and open XPG circles repre-
sent catalytic activity of XPG
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Contradicting results still exist and should be resolved before 
a clear understanding of XPG function in regulating R-loop 
metabolism is obtained. For instance, both XPF and XPG, 
as part of the whole TC-NER machinery, were implicated 
in resolving R-loops when other mechanisms that prevent 
their excessive formation are inhibited [108]. On the con-
trary, only XPG, but not XPF, was found to be recruited to 
and help resolve R-loops at DSBs in transcriptional active 
regions [111]. This may suggest that XPG can mediate 
R-loop processing independently from (TC-)NER, but it is 
unclear how XPG is recruited and, especially, positioned 
and activated to cleave R-loops. Given the tight regulation of 
XPG (and XPF) function in NER, by multiple protein–pro-
tein interactions, it seems reasonable to assume that similar 
mechanisms exist to prevent unwanted XPG-mediated inci-
sions during R-loop metabolism. How this is accomplished 
is currently unknown and should be further investigated.

Homologous recombination and replication stress

Besides processing R-loops at stalled replication forks [115], 
XPG may also function non-enzymatically to counteract rep-
lication stress. Purified XPG binds fork-like structures [49, 
72] and in cells XPG was shown to interact and colocalize 
at stalled forks with the WRN helicase, which is thought to 
serve as fork-protection factor during replication stress [116]. 
Interestingly, independently of its catalytic activity, XPG 
was able to stimulate both the helicase and annealing activ-
ity of WRN in vitro. Furthermore, XPG was found to have 
a non-catalytic role in recovery from replication stress by 
promoting homologous recombination [117]. XPG interacts 
with multiple homologous recombination proteins, including 
BRCA2, PALB2 and RAD51, and promotes their loading 
at DSB sites. In addition, XPG interacts with BRCA1 and 
promotes its dissociation from chromatin [117]. In spite of 
these intriguing findings, much of the proposed functions of 
XPG in replication stress and homologous recombination 
still await further confirmation and should be investigated 
in more detail to precisely understand the structural role of 
XPG in maintaining genome stability of replicating cells. 
Also, in transcriptionally active chromatin, XPG recruitment 
to R-loops at DSB sites may indicate that XPG can have a 
double role in promoting HR. First, XPG may help resolve 
R-loops by its endonucleolytic activity, after which it may 
further promote repair by its association with HR factors. It 
would therefore be interesting to investigate the connection 
between these enzymatic and non-enzymatic functions in 
HR.

XPG and human disease

The multiple tasks that XPG performs both enzymatically 
and structurally in genome maintenance, replication and 
transcription imply that it must be an essential and critical 
factor for cellular homeostasis and organismal development 
and growth. Indeed, hereditary mutations in XPG are asso-
ciated with several rare human diseases characterized by a 
perplexing broad spectrum of symptoms including cancer 
predisposition, progressive neurodegeneration and devel-
opmental failure (Tables 1, 2, 3; Supplementary Table 1). 
Mild XPG mutations cause xeroderma pigmentosum (XP), 
which is characterized by photosensitivity, abnormal skin 
pigmentation, increased risk of cancer and sometimes, but 
not always, neurological diseases (Table 1). Many of these 
patients express XPG mutant proteins carrying a missense 
or frame-shift mutation near the catalytic core that disrupts 
or reduces XPG DNA-binding and/or nuclease activity and, 
thus, NER efficiency [76, 77]. XP symptoms are therefore 
thought to be mainly caused by reduced or defective GG-
NER, in which the degree of the repair defect will corre-
late with the severity of symptoms. More severe mutations, 
which often truncate the XPG protein or, in case of missense 
mutations, are thought to disrupt the entire protein function, 
stability and interactions [72], cause additional Cockayne 
syndrome features, called xeroderma pigmentosum–Cock-
ayne syndrome (XPCS) complex (Table 2), also referred to 
as cerebro-oculo-facio-skeletal (COFS) syndrome when very 
severe (Table 3) [118]. XPCS complex patients are char-
acterized by mental retardation, bird-like faces, dwarfism 
and developmental delay, progeria and severe, progressive 
neurological abnormalities.

Like humans, model organisms such as S. cerevisiae and 
C. elegans with XPG deficiency show mild to severe growth 
and developmental defects [119, 120]. In addition, several 
XPG mouse models have been generated that recapitulate 
disease phenotypes. Strikingly, mice with point mutations 
inactivating XPG endonuclease activity or lacking the last 
183 amino acids were UV sensitive, but otherwise normal, 
whereas mice lacking XPG completely or its last 360 amino 
acids (including half of the I domain) showed progres-
sive growth retardation upon birth and died prematurely 
[121–123]. In line with this, conditional XPG knockout 
mouse models also showed shortened lifespan and many 
growth deficiencies including progressive progeroid features 
and neurodegeneration, whose severity strikingly depends 
on the genetic background of the mice [124].

It is still debated why truncations and certain mutations 
in XPG cause more severe phenotypes and in humans lead 
to progeroid CS features in addition to XP. Typically, CS is 
associated with hereditary defects in TC-NER proteins such 
as CSA and CSB, suggesting that XPG–XPCS mutations 
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may reduce TC-NER besides GG-NER. However, muta-
tions in the TC-NER protein UVSSA and some mutations 
in CSA and CSB do not cause CS, but the rather mild pho-
tosensitive disorder UV sensitive syndrome, indicating that 
mere TC-NER deficiency is not the underlying cause for the 
additional severe symptoms. Possibly, a function of XPG 
outside NER plays a role in disease development. Human 
patients and mouse models expressing intact but nuclease-
inactive XPG do not typically show severe CS-like features, 
suggesting that it is not the loss of enzymatic activity but 
the loss of non-enzymatic and/or structural functions of 
XPG that is linked to a more severe phenotype. Because of 
this, multiple hypotheses have been put forward to explain 
the pathogenesis of CS involving non-NER functions for 
XPG and other NER proteins. For instance, because XPG 
strongly interacts with and stabilizes TFIIH, a feature that is 
disrupted by a CS-causative mutation, it was suggested that 
gene expression problems may give rise to some of the more 
severe CS symptoms [51]. Furthermore, possibly truncating 
XPG mutations may specifically impair non-catalytic roles 
of XPG such as in oxidative DNA damage repair [101, 102] 
or in homologous recombination and/or replication fork pro-
tection [116, 117], giving rise to more severe developmental 
defects as observed in CS. Oxidative DNA damage repair 
may be particularly relevant to neurological CS features 
because oxidative lesions occur endogenously in cells like 
neurons that are not exposed to the environment and because 
some types of oxidative lesions are repaired by TC-NER 
[125]. Notably, like XPG, the TC-NER factors CSA and 
CSB have also been implicated in repair of oxidative damage 
via BER. CS-A and CS-B patient cells are hypersensitive to 
oxidative DNA damage and show accumulation of oxida-
tive lesions [94, 126–128]. Also, CSB has been reported to 
interact with multiple BER factors, such as PARP1 [129] and 
APE1 [130] and to promote recruitment of XRCC1 to sites 
of oxidative DNA damage [95]. It has been suggested that 
transcription blockage by accumulation of oxidative damage 
might trigger neuronal cell death or senescence [125, 131]. 
Therefore, it is possible that specific CSA, CSB or XPG 
mutations result in deficient removal of oxidative lesions, 
leading to blocking of transcription and, consequently, trig-
gering of CS symptoms. Moreover, also the emerging role of 
XPG in R-loop processing may be relevant to some aspects 
of the CS pathology, as in the absence of XPG R-loop levels 
will increase that may cause genome instability [104, 108, 
111]. This may be even exacerbated due to the absence of 
functional TC-NER, as transcription-blocking DNA lesions 
lead to spliceosome displacement which causes the mRNA 
to hybridize with template ssDNA and form R-loops [106]. 
Moreover, these R-loops were shown to trigger noncanoni-
cal ATM activation leading to alternative spliced transcripts 
and differences in gene expression that might adversely 
affect cell function. Despite these possibilities, we favor an Ta
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explanation that takes into account the fact that only muta-
tions in TC-NER genes, albeit not all, cause CS features, 
which strongly points to a pathogenic connection with 
the TC-NER process itself. We noticed previously that in 
XPF- and XPG-deficient XPCS complex cells the core NER 
machinery is continuously targeted to DNA damage due to 
the absence of repair [132]. Therefore, we proposed that 
additional CS features are caused by the inability to remove 
stalled NER intermediates, either involving Pol II or TFIIH, 
which would prevent repair of the lesion by other means 
and could interfere with transcription and replication [15]. 
More research is needed to prove the value of this and other 
hypotheses, focusing on the pathogenic impact of different 
disease-causing mutations in XPG on the exact molecular 
buildup of the TC-NER machinery and on TC-NER effi-
ciency with regard to different types of endogenously occur-
ring DNA damage.

In summary, although XPG was originally identified as 
a major endonuclease in NER, it has now become clear that 
the protein has important functions outside NER as well. 
Future research should be aimed at better understanding 
how the activity of XPG in these different pathways is regu-
lated. In particular, it is not yet exactly clear whether XPG 
is recruited to the NER machinery separately or as part of 
TFIIH, whether it forms a dimer and when and how it dis-
sociates after incision. Also, how its recruitment to and sta-
ble association with transcription sites, other types of DNA 
damage and repair pathways and R-loops are regulated is not 
known. Finally, a systematic comparison of XPG disease 
mutations and their impact on XPG functions and associ-
ated phenotypes in isogenic cellular or animal models may 
be helpful to elucidate how exactly its deficiency leads to 
certain disease symptoms.
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